از مزایای شبکه های عصبی می توان موارد زیر را نام برد :

یادگیری تطبیقی : توانایی یادگیری اینکه چگونه وظایف خود را بر اساس اطلاعات داده شده به آن و یا تجارب اولیه انجام دهد در واقع اصلاح شبکه را گویند.

خود سازماندهی : یک شبکه عصبی مصنوعی به صورت خودکار سازماندهی و ارائه داده هایی که در طول آموزش دریافت کرده را انجام دهد. نورون ها با قاعده یادگیری سازگار شده و پاسخ به ورودی تغییر می یابد.

عملگرهای بی درنگ : محاسبات در شبکه عصبی می تواند به صورت موازی و بوسیله سخت افزارهای مخصوصی که طراحی و ساخت آن برای دریافت نتایج بهینه قابلیت شبکه های عصبی مصنوعی است انجام شود.

تحمل خطا : با ایجاد خرابی در شبکه مقداری از کارآیی کاهش می یابد ولی برخی امکانات آن با وجود مشکلات بزرگ همچنان حفظ می شود.

دسته بندی : شبکه های عصبی قادر به دسته بندی ورودی ها برای دریافت خروجی مناسب         می باشند.

تعمیم دهی : این خاصیت شبکه را قادر می سازد تا تنها با برخورد با تعداد محدودی نمونه، یک قانون کلی از آن را بدست آورده، نتایج این آموخته ها را به موارد مشاهده از قبل نیز تعمیم دهد. توانایی که در صورت نبود آن سامانه باید بی نهایت واقعیت ها و روابط را به خاطر بسپارد.

پایداری – انعطاف پذیری : یک شبکه عصبی هم به حد کافی پایدار است تا اطلاعات فراگرفته خود را حفظ کند و هم قابلیت انعطاف و تطبیق را دارد و بدون از دست دادن اطلاعات قبلی میتواند موارد جدید را بپذیرد.(نوری بروجردی،اسگندری،1388، 6)

شبکه عصبی در شرایطی بکار می رود که ساختار مسائل روشن نیست و باید نوعی روند- شناسی یا بازشناسی الگو صورت گیرد. مدیران مؤسسات مالی، نهادهای مالی در عمل با بسیاری از این شرایط مواجه اند.

شبکه عصبی از دیگر روشهای طبقه بندی نمونه به شمار می آید که در آن، فرض خطی بودن روابط میان متغیرها اامی نمی باشد. استقلال متغیرهای توضیحی حذف شده است و در آن روابط پنهان بین متغیرهای توضیحی به عنوان یک متغیر اضافی وارد تابع می شود. در مورد شرکتها که اطلاعات کمتری نسبت به شخصیتهای حقیقی دارند بیشتر بکار رفته است. برای شناخت الگوهایی که در داده ها وجود دارند بسیار مفید هستند، خصوصاً در مواقعی که نوع رابطه بین هدف (به عنوان مثال ارزیابی وضعیت اعتباری) و متغیرهای ورودی (مثلا ویژگی های جمعیتی) نامشخص و یا پیچیده باشد.

شبکه های عصبی روش محاسبه ای متفاوت با روشهای متداول می باشند. محاسباتی که با روشهای معمولی انجام می شود از نوع برنامه ریزی شده است و در آنها الگوریتم ها و مجموعه هایی از قواعد به کار می روند تا مسأله را حل کنند. در این روشها اگر الگوریتمی در دست نباشد یا الگوریتم پیچیده باشد، راه حلی برای مسأله وجود نخواهد داشت. اما در محاسباتی که شبکه عصبی اجرا میکند به الگوریتم و مجموعه قواعد نیاز نیست.

تحقیقات به عمل آمده ثابت نموده که شبکه های عصبی نسبت به روشهای قبل از خود در ارزیابی نمودن اعتبار مشتریان از صحت بیشتری برخوردار بوده اند و این متد قابلیت ترکیب با سایر متدها را دارد و تأیید شده که ترکیب آن با سایر متدها بیشترین صحت را بدنبال داشته است.

علیرغم برتری روشهای شبکه های عصبی، انتقاداتی نیز بر آن وارد می باشد.

وقتی روابط بین متغیرها غیر خطی باشد یکی از مناسبترین ابزارها، شبکه عصبی است. اما علیرغم برتری روشهای شبکه‌های عصبی، این روش محدودیت‌هایی نیز دارد که به کارگیری آن را محدود می‌کند.

1ـ دسته بندی دودویی (باینر): داده‌های ورودی به راحتی می‌تواند به صورت (1 و 0) ارائه گردند. اما دسته بندی داده‌های چند کلاسه به طور نامناسبی صورت می‌گیرد. مثلا دسته بندی وضعیت اقامت (دوران ست) در50 ایالت امریکا در درخت تصمیم گیری به طور طبیعی صورت می‌پذیرد. اما در شبکه عصبی این کار مشکل است.

2ـ شبکه عصبی یک مدل قابل درک نیست. شبکه عصبی بیشتر جعبه سیاه” است و توضیح چرایی نتایج مشکل و یا غیر ممکن است.

3ـ همراه با به کارگیری شبکه عصبی در سیستم کامپیوتر، شرکت‌ها و سازمان‌ها نیاز به مفسران یا خبرگان ماهر دارند.

4ـ برای افراد غیرفنی توضیح و توجیه چگونگی تعمیم خیلی مشکل است.

زیریلی[1] بزرگترین چالش به کار گیری شبکه‌های عصبی در امور مالی را چنین توصیف می‌کند:

بزرگترین چالش در به کارگیری شبکه‌های عصبی در مسائل مالی خود شبکه نیست بلکه شیوه تبدیل و فرآورش داده‌های ورودی جهت ارائه به شبکه و شیوه تفسیر نتایج خروجی شبکه است.

5ـ یکی دیگر از این محدودیتها، می توان به مشکل بودن فرآیند آموزش در آن اشاره کرد که تا حد زیادی کاربرد آن را محدود نموده است.(زیریلی،1997، 20)

با توجه به دو ویژگی اساسی شبکه های عصبی یعنی یادگیری یا نگاشت پذیری براساس ارائه داده‌های تجربی و ساختار پذیری موازی، این شبکه‌ها در مسائل گوناگون مدیریتی کاربردهای مختلفی پیدا کرده‌اند

 

[1] Zirilli

لینک جزییات بیشتر و دانلود این پایان نامه:

اعتبارسنجی واحدهای تجاری دریافت کننده تسهیلات مالی مبتنی بر صورتهای مالی

 

مشخصات

  • جهت مشاهده منبع اصلی این مطلب کلیک کنید
  • کلمات کلیدی منبع : شبکه ,عصبی ,صورت ,بندی ,روشهای ,ورودی ,شبکه عصبی ,دسته بندی ,داده‌های ورودی ,نامه اعتبارسنجی ,شبکه‌های عصبی ,علیرغم برتری روشهای
  • در صورتی که این صفحه دارای محتوای مجرمانه است یا درخواست حذف آن را دارید لطفا گزارش دهید.

تبلیغات

محل تبلیغات شما
محل تبلیغات شما محل تبلیغات شما

آخرین وبلاگ ها

برترین جستجو ها

آخرین جستجو ها

فان سنتر , مدل لباس , فیلم , سریال , آهنگ , عکس , اس ام اس پری قصه ها رنگ بندی فرش های ماشینی پایگاه مهندسی صنایع Francisco درد و دل فیلم و سریال رایگان | TheFilms.ir Doug سایت شیخ بهایی بایدوآ تشریـــᓅـات شیــڪً